If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15y^2+8y+1=0
a = 15; b = 8; c = +1;
Δ = b2-4ac
Δ = 82-4·15·1
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2}{2*15}=\frac{-10}{30} =-1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2}{2*15}=\frac{-6}{30} =-1/5 $
| 3a+(-4a)-12=15+a | | 8n-9=6n+9 | | (2z+7)-5(9z)=-60 | | 23-x+x+8-x+2x=50 | | 23-x+x+18-3+2x=50 | | (9/8)^3x-12=1 | | (9/8)^3x-10=(1/81)^1/6 | | 9^3x+12=1 | | 5x2-100x=0 | | 6/5=x/24 | | 5x+8(2x+9=54 | | F(x)=7x^2+3x+8 | | 6y=23+7= | | y^2+16=52 | | 0.42x+1.26+5=3x+2 | | 28x=95 | | 28x=95x | | 26x-12=16x-2 | | W^2+6w-140=0 | | x-11+11=7+11 | | 17x-8=7x | | 9d+9=d3+d2 | | 18^2+15^2-5^3=4n | | x2-12x-1440=0 | | 2x^+3x(-4)=15 | | 8x+9=2(x+1)+7 | | X+20+3x=-2-3x-17 | | 3^x-1-3^x-2=54 | | 7^7x=3 | | 4x2=-8x+221 | | 56-y/2=y/3+3 | | 4(L-3)=9(3l-1) |